

Current Solutions in Spine Surgery Spinal Navigation Using BodyTom Intraop CT

Dom Coric M.D.

Carolina Neurosurgery and Spine Associates
Chief, Dept of Neurosurgery, CMC
Charlotte, North Carolina

Duck Key, Florida 5/2/2013

SURGERY & SPINE DISCLOSURE

DOM CORIC, M.D.

- Spine Wave: Consultant/Stock/Royalties
- Pioneer Surgical: Consultant/Stock/Royalties
- Spinal Motion: Consultant/Stock
- Medtronic: Consultant
- Globus Medical: Speaker Bureau

• United Healthcare: Spine Advisory Board

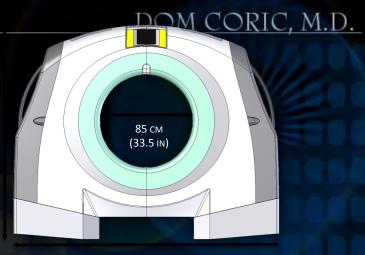
Introduction

BodyTom® Core System

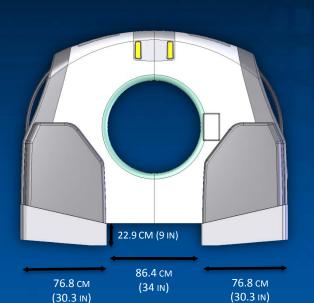
-Wireless communication/transfer of images from BodyTom to Workstation (no floor clutter, only cable in power plug).

BodyTom® Dimensions

1587kg (3500 lbs)


Side Profile

68.5 см (27 IN)


205.7 см (81 IN)

Front Profile

256.5 см (101 іN)

Rear Profile

104 см (41 IN)

BodyTom® Specs

DOM CORIC, M.D.

32 Slice Scanner

- Scanning Parameters
 - 85cm Gantry
 - 60cm Field of View
 - 4cm Aperture
 - 32 Simultaneous 1.25mm Slices per Rotation
 - 2.5mm/5mm/10mm
 - 200cm Scan Range
 - Scout, Helical, Axial and Dynamic
 - 4 Positioning Lasers

32 Detectors

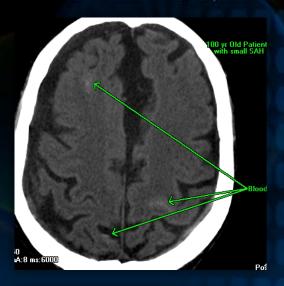
- Solid-State Detectors (CdWO₄)
- Focal Spot Size
 - 1.2mm x 1.4mm
 - 0.7mm x 0.8mm
- 17 Line Pair

X-Ray Specifications

- Tube (Varian)
 - Rotating Anode, Oil-Cooled
 - Tube Voltage 80, 100, 120 &140kV
 - Tube Current 300mA (Maximum)
 - 3.5 MHU Tube
 - 42 Kilowatt Power Supply

Large gantry and field of view. Same as fixed CT, but portable.

Brain Images

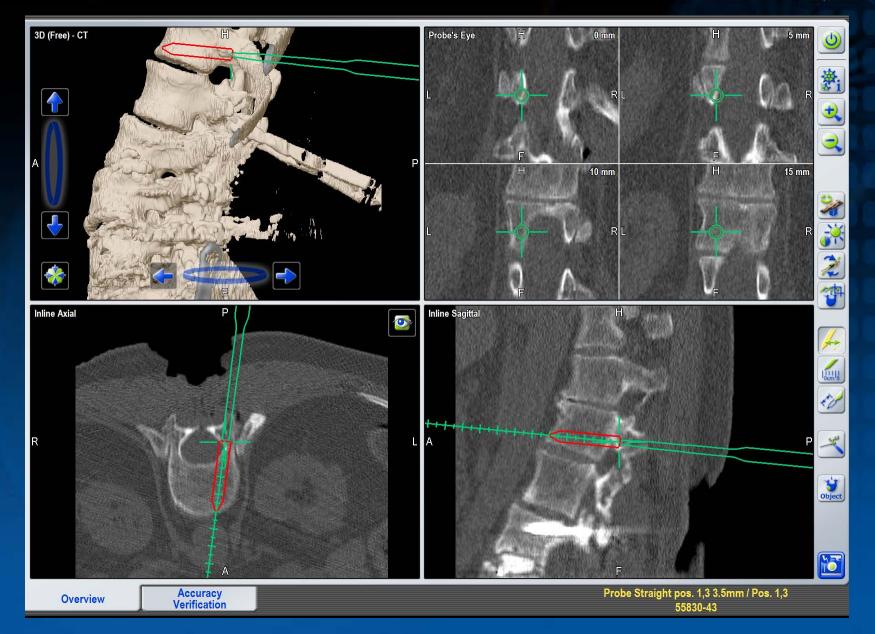

DOM CORIC, M.D.



BodyTom® Spine Surgery

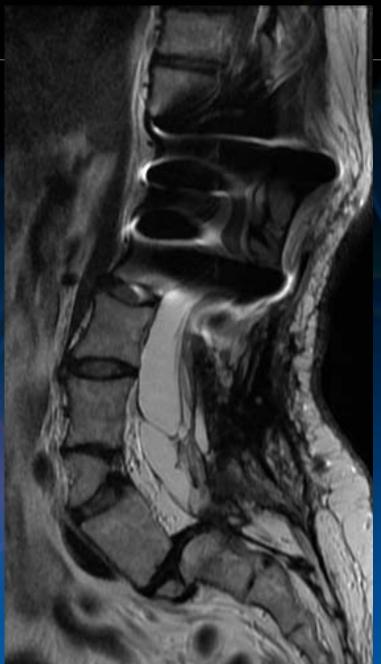
- CNSA experience
 - Used with Medtronic Stealth Station as well as BrainLab software.
 - Utilized for both intraoperative Spine and Cranial cases (accuracy allows for soft tissue and intracranial utilization).
 - Most experience with complex spine cases: revision, scoliosis, thoracic hard/soft disc, etc.
 - High resolution allows for use post-thoracic procedures, especially for calcified disc, to definitely establish adequacy of decompression.
 - Also post-PSO to establish adequacy of correction.

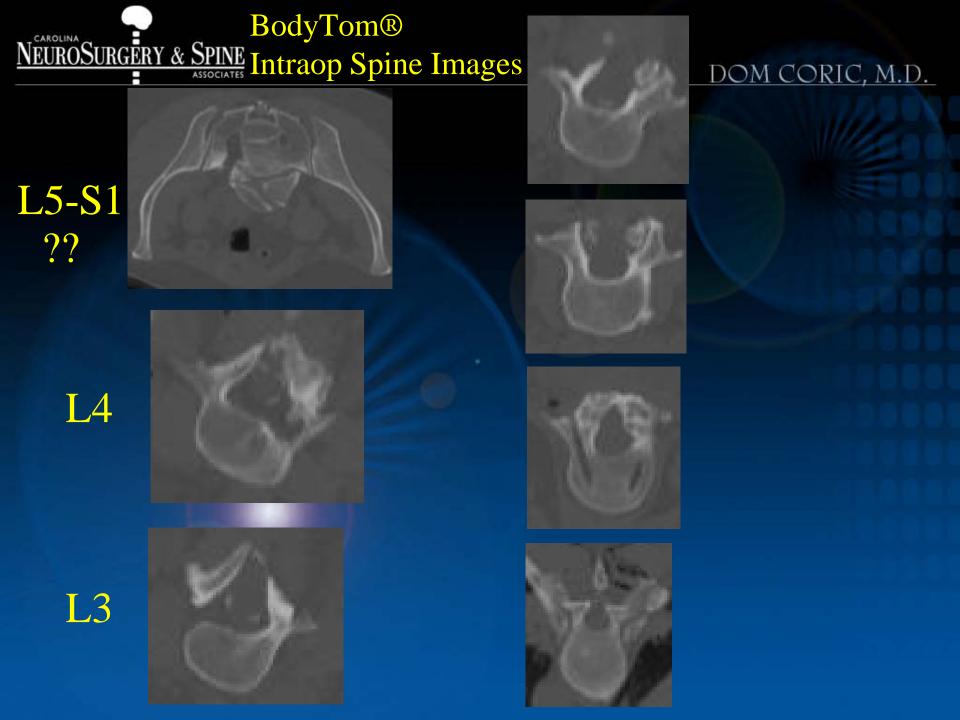
- CNSA experience
 - Advantages
 - One spin of the scanner allows for accuracy over multiple segments (60 cm field of view).
 - Generally thoracic spine to ilium.
 - Total scan time (stopping surgery, scanner in and out) takes ~10-15 mins.
 - Actual image acquisition (spin time) is 30-90 secs.
 - Surgeon/staff do not wear lead. Stand behind portable shields, do not have to leave room/re-scrub.



- CNSA experience
 - Advantages
 - Intraop nav allows for dealing with complex pathologies (i.e. redo fusion, scoliosis, altered anatomy).
 - Able to maximize use of segmental fixation (few segments skipped) including largest and longest screws.
 - Post-instrumentation spin confirms effective decompression and essentially eliminates return to the OR for misplaced instrumentation.

- CNSA experience
 - Disadvantages
 - Stealth software (which we currently use) does not currently allow for spinal auto-registration (AR).
 - Assured by MDT that progress is being made.
 - StealthAiR (AR) is available for cranial use.
 - Use point merge with multiple registration points.
 - Use of fiducials allows for reasonably fast and easy accuracy verification.
 - BrainLab software which does allow for spinal AR.
 - Stryker navigation has submitted spinal AR for approval.

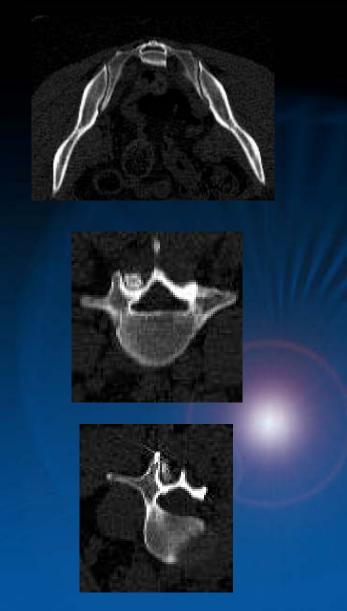

- TP: Pt is 54 yo F who presents with LBP and bilat LE pain 14 yrs s/p T11-L1 fusion for trauma and 15 yrs s/p L1-5 decompression for tethered cord followed by two subsequent intradural procedures (4 previous surgeries).
 - PE: nonfocal.
 - Imaging shows progressive spondylolisthesis L5-S1 and levo-scoliosis adjacent to fusion with apex L3-4.
 - Incompletely formed L5 hemi-vertebra.

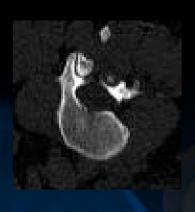


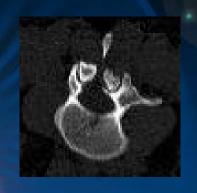
DOM CORIC, M.D.

- Pt undergoes exploration of fusion with removal of Steffee pedscrew/plate fixation T11-L1 with pedscrew fix T10-S1 with iliac fixation.
 - BodyTom intraop CT with Stealth navigation.

- TP: Pt is 23 yo F who presents with progressively severe LBP.
 - PE: nonfocal.
 - Imaging shows 60 degree curve dextro-scoliosis, inferior endplate T11-L3.
 - Compensatory 36 degree curve to left, T7-10.






- Pt undergoes posterior scoliosis correction T4-Ilium with multiple SPOs.
 - BodyTom intraop CT with Stealth navigation.
 - Segmental fixation with good correction of coronal deformity.

DOM CORIC, M.D.

THANK YOU!

